3.3.16 \(\int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx\) [216]

3.3.16.1 Optimal result
3.3.16.2 Mathematica [A] (verified)
3.3.16.3 Rubi [A] (warning: unable to verify)
3.3.16.4 Maple [A] (verified)
3.3.16.5 Fricas [C] (verification not implemented)
3.3.16.6 Sympy [F]
3.3.16.7 Maxima [A] (verification not implemented)
3.3.16.8 Giac [F]
3.3.16.9 Mupad [B] (verification not implemented)

3.3.16.1 Optimal result

Integrand size = 12, antiderivative size = 212 \[ \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} d^{3/2} f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} d^{3/2} f} \]

output
-1/2*arctan(1-2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))/d^(3/2)/f*2^(1/2)+1/2* 
arctan(1+2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))/d^(3/2)/f*2^(1/2)+1/4*ln(d^ 
(1/2)+cot(f*x+e)*d^(1/2)-2^(1/2)*(d*cot(f*x+e))^(1/2))/d^(3/2)/f*2^(1/2)-1 
/4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)+2^(1/2)*(d*cot(f*x+e))^(1/2))/d^(3/2)/f*2 
^(1/2)+2/d/f/(d*cot(f*x+e))^(1/2)
 
3.3.16.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.39 \[ \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx=\frac {2+\arctan \left (\sqrt [4]{-\cot ^2(e+f x)}\right ) \sqrt [4]{-\cot ^2(e+f x)}-\text {arctanh}\left (\sqrt [4]{-\cot ^2(e+f x)}\right ) \sqrt [4]{-\cot ^2(e+f x)}}{d f \sqrt {d \cot (e+f x)}} \]

input
Integrate[(d*Cot[e + f*x])^(-3/2),x]
 
output
(2 + ArcTan[(-Cot[e + f*x]^2)^(1/4)]*(-Cot[e + f*x]^2)^(1/4) - ArcTanh[(-C 
ot[e + f*x]^2)^(1/4)]*(-Cot[e + f*x]^2)^(1/4))/(d*f*Sqrt[d*Cot[e + f*x]])
 
3.3.16.3 Rubi [A] (warning: unable to verify)

Time = 0.47 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.93, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.083, Rules used = {3042, 3955, 3042, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (-d \tan \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3955

\(\displaystyle \frac {2}{d f \sqrt {d \cot (e+f x)}}-\frac {\int \sqrt {d \cot (e+f x)}dx}{d^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2}{d f \sqrt {d \cot (e+f x)}}-\frac {\int \sqrt {-d \tan \left (e+f x+\frac {\pi }{2}\right )}dx}{d^2}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {\int \frac {\sqrt {d \cot (e+f x)}}{\cot ^2(e+f x) d^2+d^2}d(d \cot (e+f x))}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 \int \frac {d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {2 \left (\frac {1}{2} \int \frac {d^2 \cot ^2(e+f x)+d}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}+\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}-\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int \frac {\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}-\frac {\log \left (\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}\right )\right )}{d f}+\frac {2}{d f \sqrt {d \cot (e+f x)}}\)

input
Int[(d*Cot[e + f*x])^(-3/2),x]
 
output
2/(d*f*Sqrt[d*Cot[e + f*x]]) + (2*((-(ArcTan[1 - Sqrt[2]*Sqrt[d]*Cot[e + f 
*x]]/(Sqrt[2]*Sqrt[d])) + ArcTan[1 + Sqrt[2]*Sqrt[d]*Cot[e + f*x]]/(Sqrt[2 
]*Sqrt[d]))/2 + (Log[d - Sqrt[2]*d^(3/2)*Cot[e + f*x] + d^2*Cot[e + f*x]^2 
]/(2*Sqrt[2]*Sqrt[d]) - Log[d + Sqrt[2]*d^(3/2)*Cot[e + f*x] + d^2*Cot[e + 
 f*x]^2]/(2*Sqrt[2]*Sqrt[d]))/2))/(d*f)
 

3.3.16.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3955
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x] 
)^(n + 1)/(b*d*(n + 1)), x] - Simp[1/b^2   Int[(b*Tan[c + d*x])^(n + 2), x] 
, x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.3.16.4 Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.74

method result size
derivativedivides \(-\frac {2 d \left (-\frac {1}{d^{2} \sqrt {\cot \left (f x +e \right ) d}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\cot \left (f x +e \right ) d -\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}{\cot \left (f x +e \right ) d +\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d^{2} \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f}\) \(157\)
default \(-\frac {2 d \left (-\frac {1}{d^{2} \sqrt {\cot \left (f x +e \right ) d}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\cot \left (f x +e \right ) d -\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}{\cot \left (f x +e \right ) d +\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d^{2} \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f}\) \(157\)

input
int(1/(cot(f*x+e)*d)^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/f*d*(-1/d^2/(cot(f*x+e)*d)^(1/2)-1/8/d^2/(d^2)^(1/4)*2^(1/2)*(ln((cot(f 
*x+e)*d-(d^2)^(1/4)*(cot(f*x+e)*d)^(1/2)*2^(1/2)+(d^2)^(1/2))/(cot(f*x+e)* 
d+(d^2)^(1/4)*(cot(f*x+e)*d)^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/ 
(d^2)^(1/4)*(cot(f*x+e)*d)^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(cot(f*x 
+e)*d)^(1/2)+1)))
 
3.3.16.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.25 (sec) , antiderivative size = 379, normalized size of antiderivative = 1.79 \[ \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx=\frac {{\left (d^{2} f \cos \left (2 \, f x + 2 \, e\right ) + d^{2} f\right )} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) + {\left (-i \, d^{2} f \cos \left (2 \, f x + 2 \, e\right ) - i \, d^{2} f\right )} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (i \, d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) + {\left (i \, d^{2} f \cos \left (2 \, f x + 2 \, e\right ) + i \, d^{2} f\right )} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (-i \, d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) - {\left (d^{2} f \cos \left (2 \, f x + 2 \, e\right ) + d^{2} f\right )} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (-d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) + 4 \, \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}} \sin \left (2 \, f x + 2 \, e\right )}{2 \, {\left (d^{2} f \cos \left (2 \, f x + 2 \, e\right ) + d^{2} f\right )}} \]

input
integrate(1/(d*cot(f*x+e))^(3/2),x, algorithm="fricas")
 
output
1/2*((d^2*f*cos(2*f*x + 2*e) + d^2*f)*(-1/(d^6*f^4))^(1/4)*log(d^5*f^3*(-1 
/(d^6*f^4))^(3/4) + sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))) + (-I 
*d^2*f*cos(2*f*x + 2*e) - I*d^2*f)*(-1/(d^6*f^4))^(1/4)*log(I*d^5*f^3*(-1/ 
(d^6*f^4))^(3/4) + sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))) + (I*d 
^2*f*cos(2*f*x + 2*e) + I*d^2*f)*(-1/(d^6*f^4))^(1/4)*log(-I*d^5*f^3*(-1/( 
d^6*f^4))^(3/4) + sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))) - (d^2* 
f*cos(2*f*x + 2*e) + d^2*f)*(-1/(d^6*f^4))^(1/4)*log(-d^5*f^3*(-1/(d^6*f^4 
))^(3/4) + sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))) + 4*sqrt((d*co 
s(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))*sin(2*f*x + 2*e))/(d^2*f*cos(2*f*x + 
 2*e) + d^2*f)
 
3.3.16.6 Sympy [F]

\[ \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx=\int \frac {1}{\left (d \cot {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/(d*cot(f*x+e))**(3/2),x)
 
output
Integral((d*cot(e + f*x))**(-3/2), x)
 
3.3.16.7 Maxima [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.88 \[ \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx=\frac {d {\left (\frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}} + \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}}}{d^{2}} + \frac {8}{d^{2} \sqrt {\frac {d}{\tan \left (f x + e\right )}}}\right )}}{4 \, f} \]

input
integrate(1/(d*cot(f*x+e))^(3/2),x, algorithm="maxima")
 
output
1/4*d*((2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d/tan(f*x + 
 e)))/sqrt(d))/sqrt(d) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 
2*sqrt(d/tan(f*x + e)))/sqrt(d))/sqrt(d) - sqrt(2)*log(sqrt(2)*sqrt(d)*sqr 
t(d/tan(f*x + e)) + d + d/tan(f*x + e))/sqrt(d) + sqrt(2)*log(-sqrt(2)*sqr 
t(d)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/sqrt(d))/d^2 + 8/(d^2*sqrt 
(d/tan(f*x + e))))/f
 
3.3.16.8 Giac [F]

\[ \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx=\int { \frac {1}{\left (d \cot \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(d*cot(f*x+e))^(3/2),x, algorithm="giac")
 
output
integrate((d*cot(f*x + e))^(-3/2), x)
 
3.3.16.9 Mupad [B] (verification not implemented)

Time = 3.79 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.36 \[ \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx=\frac {2}{d\,f\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}+\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{d^{3/2}\,f}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{d^{3/2}\,f} \]

input
int(1/(d*cot(e + f*x))^(3/2),x)
 
output
2/(d*f*(d*cot(e + f*x))^(1/2)) + ((-1)^(1/4)*atan(((-1)^(1/4)*(d*cot(e + f 
*x))^(1/2))/d^(1/2)))/(d^(3/2)*f) - ((-1)^(1/4)*atanh(((-1)^(1/4)*(d*cot(e 
 + f*x))^(1/2))/d^(1/2)))/(d^(3/2)*f)